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Graphene is promising as a host material for electron spin qubits because of its predicted potential for long
coherence times. In armchair graphene nanoribbons (aGNRs) a small band gap is opened, allowing for electrically
gated quantum dots, and furthermore the valley degeneracy is lifted. The spin lifetime T1 is limited by spin
relaxation, where the Zeeman energy is absorbed by lattice vibrations, mediated by spin-orbit and electron-phonon
coupling. We have calculated T1 by treating all couplings analytically and find that T1 can be in the range of seconds
for several reasons: (i) low phonon density of states away from Van Hove singularities; (ii) destructive interference
between two relaxation mechanisms; (iii) Van Vleck cancellation at low magnetic fields; (iv) vanishing coupling
to out-of-plane modes in lowest order due to the electronic structure of aGNRs. Owing to the vanishing nuclear
spin of 12C, T1 may be a good measure for overall coherence. These results and recent advances in the controlled
production of graphene nanoribbons make this system interesting for spintronics applications.
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I. INTRODUCTION

Graphene has attracted intense scientific interest for its
mechanical, electronic, and other properties.1–4 Within the
plane of its two-dimensional lattice it is extremely rigid while
out-of-plane deformations are relatively soft due to the lack of
a linear restoring force.5,6 The absence of a band gap leads to a
quasirelativistic behavior of the electrons that can be described
by a Dirac-like Hamiltonian.7,8 However, for typical semicon-
ductor applications such as transistors or spintronics devices,
it is favorable to work with a band gap.9–12 Due to Klein’s
paradox, a band gap is necessary to confine charge carriers
electrostatically in graphene.7,13 There are different situations
that lead to a band gap in graphene and some of them have
already been studied in view of spintronics applications.12,14

Armchair graphene nanoribbons (aGNRs) can exhibit a
band gap and in addition allow for coupling of qubits in
nonadjacent quantum dots (QDs).15–17 Such a nonlocal cou-
pling of qubits is ideal for fault-tolerant quantum computing
and thus for scalability.12,18 Over the past years, there has
been substantial progress towards the goal of controlling the
GNR edge termination within the production process and the
controlled production of aGNRs might become feasible in the
near future.19–21

Spintronics applications like the Loss-DiVincenzo quantum
computer require spin coherence times much longer than
typical operation times.22,23 When the qubit is represented
by the real electron spin, carbon materials are considered
promising due to the small atomic spin-orbit coupling and
weak interaction with nuclear spins in carbon.12,24,25 While
the curvature significantly enhances intrinsic spin-orbit cou-
pling and hence spin relaxation in carbon nanotubes, this
effect should not occur in flat graphene.24,26–29 The natural
abundance of 13C, the only stable carbon isotope with a finite
nuclear spin I = 1/2 is only 1%. The concentration of nuclear
spins can be further decreased by depleting this isotope. For
magnetic fields above the 10 mT regime, flip-flop processes
between nuclear spins and electronic spins become suppressed
due to the different magnetic moments, μB � μnuc. We expect
that T2 is dominated by T1 and that the spin relaxation time is
a good measure for overall coherence, T1 ≈ T2/2.

In this paper, we calculate the spin relaxation time T1 for
electrons that are confined in an aGNR QD. The finite width of
the quasi-one-dimensional aGNR leads to confinement in the
transverse (x) direction. As we will discuss in Sec. III, aGNRs
of appropriate width have a band gap. This allows us to avoid
Klein’s paradox and confine electrons in the longitudinal (y)
direction by means of an electrostatic potential V (y). In a
perpendicular magnetic field Bez, the two possible spin states
of an electron inside the QD are split by the Zeeman energy
gμBB = h̄ω, where g = 2 is the electron g factor. Figure 1
shows a sketch of the system.

Due to energy conservation, the Zeeman energy must be
transferred to the lattice upon spin relaxation. For typical
laboratory magnetic fields B � 20 T, the Zeeman energy
corresponds to low-energy acoustic phonons at the center
of the Brillouin zone.30 We consider two cases separately:
(i) free and (ii) fixed boundaries. The electron-phonon coupling
HEPC comprises the deformation potential as well as the bond
length change and couples in-plane vibrational modes to the
electronic state. By including the spin-orbit interaction HSOI,

FIG. 1. (Color online) Sketch of the system and definition of
the coordinate frame. The GNR has armchair terminations in the x

direction. The width of the sketched aGNR is characterized by m = 3
and μ = −1, which leads to a band gap that allows for electrostatic
confinement in the y direction. The potential V (y) defines the two
barrier regions B1, B2 (shaded), and the dot region D that lies
symmetrically between the barrier regions. The interatomic distance
in graphene is a = 1.42 Å.
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the spin thus becomes connected to the vibrational state of the
system. The coupling to the out-of-plane modes is considered
as well. Yet such a coupling either vanishes identically due to
the electronic structure in aGNRs or appears only in higher
order.

This paper is organized as follows. In Sec. II, we present
our model and in Sec. III, we recapitulate the bound states of
aGNR QDs and explain the extended, quasicontinuous states.
Acoustic GNR phonons are shortly reviewed in Sec. IV. The
effective spin-phonon coupling mechanisms that lead to T −1

1
via Fermi’s golden rule are clarified in Sec. V. In Sec. VI,
we comment on the actual evaluation of T1. The results are
presented in Sec. VII and discussed in Sec. VIII.

II. MODEL

The Hamiltonian of the system is

H = Helec + Hphon + HSOI + HEPC, (1)

where Helec and Hphon describe the unperturbed electronic
system and the unperturbed vibrational system, respectively.
The spin-orbit interaction HSOI leads to an admixture of
opposite spin states such that the electron phonon coupling
HEPC can induce a spin flip. Denoting the Fermi velocity by
vF and the pseudospin by σ , the unperturbed electronic part of
the system obeys the Hamiltonian

Helec = −ih̄vF

(
σx∂x + σy∂y 0

0 −σx∂x + σy∂y

)
+ V (y)

(2)

with eigenstates |k〉. The pure vibrational modes are described
by

Hphon =
∑
α,q

h̄ωα,q

(
nα,q + 1

2

)
, (3)

where the summation runs over all phonon branches α and
wave numbers q. The angular frequency ωα,q of a vibrational
mode is implicitly determined by α and q and nα,q is
the occupation number operator. The eigenstates are the
occupation number states |nα,q〉.

Since HEPC does not couple to the spin, the spin-orbit
interaction HSOI needs to be included in order to obtain a spin
relaxing mechanism via admixture of electronic states.31 For
this admixture, we consider both bound states confined inside
the dot and extended, quasicontinuous states energetically
above the confinement potential.

As will be discussed in more detail, HSOI perturbs the
electron-spin product states |k〉|s〉 = |k s〉(0), where s = ↑,↓.
We denote the first-order perturbed states by |k s〉. Finally,
the electron-phonon coupling leads to finite matrix elements
〈k↓|HEPC|k↑〉. This allows us to use Fermi’s golden rule in
order to calculate the spin relaxation rate

T −1
1 = 2π

h̄

∑
α,q

|〈k↓,nα,q + 1|HEPC|k↑,nα,q〉|2

× ρstates(h̄ωα,q), (4)

where ρstates(h̄ωα,q) is the phonon density of states at the
respective energy. The result is a function of three parameters:

(i) length-to-width ratio (aspect ratio) L/W of the QD,
(ii) potential depth �V of the QD, and (iii) perpendicular
magnetic field B. We find that T1 can be as large as several
seconds if ρstates is small and the two mechanisms in HEPC

interfere destructively.

III. ELECTRONIC STATES

Due to the aGNR edges where the wave function vanishes
on both sublattices, electronic states in an aGNR have
transverse wave numbers

qn = π (n − μ/3)/W, (5)

where n = 0,±1,±2, . . . and W = (3m + μ)
√

3a is the
ribbon width.15 The width depends on m ∈ N and μ ∈
{−1,0,+1}. The interatomic distance is a = 1.42 Å. Due
to Eq. (5) and E = ±h̄vF

√
q2

n + k2 , where vF is the Fermi
velocity and k is the longitudinal electronic wave number, there
is a band gap Egap = 2h̄vF|q0|. Since Egap = 0 for μ = 0, we
assume μ = ±1 from now on. Note that μ is determined by
the number of atoms across the GNR, Fig. 1. Spinors with
different transverse quantum number n are orthogonal such
that we shall focus on the lowest transverse wave number with
|q0| = π/3W . The resulting gap Egap = 2h̄vFπ/3W allows
us to avoid Klein’s paradox and confine charge carriers
electrostatically in a finite square potential12

V (y) =
{

0 : y ∈ D (dot region),
�V : y ∈ B1 ∪ B2 (barrier regions). (6)

The barrier region B1 extends from the left end of the aGNR
to y = 0 and the barrier region B2 extends from y = L to the
right end. The dot region D lies symmetrically between the
barrier regions. The resulting potential landscape is shown in
Fig. 2(a) together with a bound state, which will be discussed
in the next subsection. The length of the QD is denoted by
L and assumed to be much smaller than the overall ribbon
length, L � LGNR. For concreteness, we assume an overall
GNR length of LGNR = 50W .19,20 The finite square potential
needs to be considered in the electronic dispersion relation,
which becomes

E = V (y) ± h̄vF

√
q2

0 + k2. (7)

Provided that the barrier height �V does not exceed a critical
value 2h̄vF|q0| + �V1, we can easily order bound states and
extended states by their energies. The critical value and �V1

will be explained in the next subsection—for now, we only
assume that �V does not exceed it. Then, a state with energy
E ∈ [h̄vF|q0|,h̄vF|q0| + �V ] is bound since its longitudinal
wave number k is real in the dot region and complex in the
barrier regions, thus leading to an evanescent behavior. For
E > h̄vF|q0| + �V , the longitudinal wave number is real in
all regions. This leads to extended waves. Both bound and
extended states contribute to the admixture mechanism and
thus shall be discussed in more detail.

A. Bound states

To describe bound states in aGNRs, one can assume an
infinite ribbon.12 On one hand, LGNR will always be finite in
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FIG. 2. (Color online) Electron states in an aGNR QD.
(a) Sketch of a bound state and (b) QD bound-state energy spectrum
given by roots of Eq. (12). (a) Due to armchair boundaries, the
minimum transverse wave number is q0 = ±π/3W for μ = ∓1. As
a consequence, the conduction band is separated from the valence
band by a gap of Egap = 2h̄vF|q0|. All energies shall be measured
with respect to the middle of this band gap inside the QD region. In
the barrier regions, both bands are shifted by the barrier height �V .
The resulting QD hosts at least one bound state. All bound states have
the form given by Eq. (11) and decay exponentially for y → ±∞.
The arrows underneath the greek letters indicate the directed character
of the according part of the wave function. The plotted probability
density |ψ(y)|2 belongs to the lowest bound state for L/W = 5 and
�V = 1.8h̄vFq0. (b) Bound states exist for roots of Eq. (12) and
can be plotted in a �V -E-plot. There is at least one bound state for
all values of �V . As �V is increased, more bound states fit into
the energy gap until the lowest state can leave the QD via valence
states in the barrier regions. Notably, Eq. (12) has exactly one root
for every value of E � h̄vFq0. We enumerate the bound states by
j = 0,1,2, . . . . The circled position on the j = 0 line marks the state
plotted in (a). For the shown plot, the aspect ratio is L/W = 5.

reality. On the other hand, bound states are mainly localized
in the dot region 0 � y � L and decay exponentially in
the barrier regions, as shown in Fig. 2(a). As mentioned
above, we assume L � LGNR, such that the overall ribbon
still appears approximately infinite for bound states. This
allows us to follow the description with LGNR → ∞ for bound
states.12

Accordingly, we denote the four-component envelope wave
function by

ψ = (
ψ

(K)
A ,ψ

(K)
B ,−ψ

(K ′)
A ,−ψ

(K ′)
B

)
(8)

and assume plane waves along the ribbon, ψ
(±)
n,k (x,y) =

χ
(±)
n,k (x)e±iky , where

χ
(+)
n,k = a(+)

n (1,zn,k,0,0)eiqnx + b(+)
n (−zn,k,1,0,0)e−iqnx

+ c(+)
n (0,0,−zn,k,1)eiqnx + d (+)

n (0,0,1,zn,k)e−iqnx

(9)

and

χ
(−)
n,k = a(−)

n (zn,k,1,0,0)eiqnx + b(−)
n (1,−zn,k,0,0)e−iqnx

+ c(−)
n (0,0,1,−zn,k)eiqnx + d (−)

n (0,0,zn,k,1)e−iqnx .

(10)

With zn,k = ±(qn + ik)/
√

q2
n + k2, and longitudinal wave

numbers kD = √
(E/h̄vF )2 − q2

n (dot region), κB = kB/i =√
q2

n − ((E − e�V )/h̄vF )2 (barrier regions), bound states
have the form

ψ =

⎧⎪⎨
⎪⎩

αnχ
(−)
n,κB

eκBy : y ∈ B1,

βnχ
(+)
n,kD

eikDy + γnχ
(−)
n,kD

e−ikDy : y ∈ D,

δnχ
(+)
n,κB

e−κB(y−L) : y ∈ B2.

(11)

The matching conditions at the interfaces B1/D and D/B2 (that
is, at y = 0,L) are discussed in Ref. 12 and can be met for roots
of the transcendental equation

tan(kDL) = kDκB

±
√

q2
n − κ2

B

√
q2

n + k2
D − q2

n

. (12)

For |q0| = π/3W and L/W = 5, Fig. 2(b) shows these roots as
a function of the barrier height �V . There is a finite number of
longitudinal excitations for any given �V . The different bound
states can be enumerated by j = 0,1,2, . . . and have distinct
coloring in our figure. The j th bound state has j nodes inside
the dot region. For a given excitation, �V can be increased
until the valence band reaches the energy of the lowest state,
which can now leave the QD via valence states in the barrier
regions. Note that this occurs exactly when the argument on
the left-hand side of Eq. (12) equals a multiple of π . For the
ground state, this means kD ∈ [0,π/L] such that the maximum

ground-state energy is E0,max = h̄vF

√
q2

0 + (π/L)2. States of
higher energy belong to the j th longitudinal excitation (j >

0), which begins at �Vj = h̄vF(jπ/L). For �V < �V1, the
ground state is the only bound state. This will be important for
the evaluation of T1, see Secs. VI and VII.

The critical value for �V mentioned before is �V =
2h̄vF|q0| + �V1. If the barrier height surpasses this value, the
lowest state inside the QD can leave it via valence states
in the barrier region. That is the state becomes extended
thus affecting the ordering of bound and extended states.
Throughout this paper we assume that �V does not exceed
this threshold such that the ground state belongs to j = 0.

B. Extended states

We assume LGNR = 50W for the overall length of
the GNR such that possible wave numbers are kEB =
0,±2π/LGNR, . . . ,±π/a with lattice constant a. Since energy
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FIG. 3. (Color online) Sketch of an extended state. The potential
landscape, the aspect ratio L/W , and the barrier height �V are the
same as in Fig. 2(a) for bound states. The plotted probability density
belongs to an extended state that is incident from the left as described
by Eq. (14) and for which kEB = 20π/LGNR. The arrows underneath
the greek letters indicate the direction of propagation of the according
part of the wave function.

is conserved, the wave number becomes

kED =
√(√

q2
n + k2

EB + �V/h̄vF

)2 − q2
n (13)

in the dot region. Depending on the sign of kEB, the state is
incident from y < 0, leading to

ψ =

⎧⎪⎪⎨
⎪⎪⎩

εnχ
(+)
n,kEB

eikEBy + αnχ
(−)
n,kEB

e−ikEBy : y ∈ B1,

βnχ
(+)
n,kED

eikEDy + γnχ
(−)
n,kED

e−ikEDy : y ∈ D,

δnχ
(+)
n,kEB

eikEB(y−L) : y ∈ B2,

(14)

see Fig. 3, or it is incident from y > L, which is described by

ψ =

⎧⎪⎪⎨
⎪⎪⎩

αnχ
(−)
n,kEB

e−ikEBy : y ∈ B1,

βnχ
(+)
n,kED

eikEDy + γnχ
(−)
n,kED

e−ikEDy : y ∈ D,

δnχ
(+)
n,kEB

eikEB(y−L) + εnχ
(−)
n,kEB

e−ikEB(y−L) : y ∈ B2.

(15)

The matching conditions at y = 0,L can always be met. In
contrast to bound states, extended states are propagating waves
in the barrier regions.

IV. ACOUSTIC GNR PHONONS

The phonon energies we are interested in need to match
the Zeeman splitting, h̄ω = gμBB, where ω is the phonon
frequency, g the electron g factor, and μB denotes Bohr’s
magneton. For typical laboratory magnetic fields B � 20 T,
this implies low-energy acoustic phonons at the center of
the Brillouin zone, which can be modeled by continuum
mechanics.30,32 In this model, deformations are described by
the displacement field u(r). While the components uxz and uyz

of the strain tensor uik = (∂iuk + ∂kui)/2 are known to vanish
for thin plates in general, the monatomic thickness of graphene
implies that uzz must vanish, as well. With uiz ≡ 0, the elastic

TABLE I. Numerical values of the parameters we use in our
calculation.

Parameter Ref. Parameter Ref.

σ = 0.16 39–41 g1 = 30 eV 25,33,34
E = 3.4 TPa Å 39–41 g2 = 1.5 eV 25,34
B = 12.6 eV/Å2 6,41 λR = 40 × 10−6 eV 25,28,29
μ = 9.1 eV/Å2 6,41 vF = 8.8 × 105 m/s 8,25,29
ρ = 7.61 × 10−7 kg/m2 42

Lagrangian density of monolayer graphene is given by30,33,34

L = T − V = ρ

2
u̇2 − κ

2
(�uz)

2 − B + μ

2
u2

ii + μu2
ik, (16)

where � = ∂2
x + ∂2

y , the sum convention with uii = uxx +
uyy + uzz and u2

ik = u2
xx + u2

xy + · · · has been used, ρ is the
mass density, and κ is the bending rigidity. The bulk (B) and
shear (μ) moduli can be expressed by Poisson’s ratio σ and
Young’s modulus E . The numerical values of elastic and other
constants we use are listed in Table I. Equation (16) shows that
in-plane vibrations u‖ decouple from out-of-plane vibrations
u⊥. By assuming ui(x,y) = f i(x) exp[i(qy − ωt)] for a single
mode and imposing free or fixed conditions as discussed in
Ref. 30, we obtain the according phonon dispersions (Fig. 4)
and the explicit displacement fields. The latter can be quantized
and then take the form

u|| =
∑
α,q

rα,q

(
f x

α,q ex + f y
α,q ey

)
eiqy, (17)

u⊥ =
∑
α,q

rα,qf
z
α,q eze

iqy, (18)

where q is the phonon wave number, α labels the phonon
branch, and

rα,q = √
h̄/(2ρLWωα,q )(bα,q + b

†
α,−q) (19)

is the normal coordinate. The operator bα,q (b†α,q) annihilates
(creates) a phonon on branch α with wave number q.

As discussed in the following section, we can neglect cou-
pling to out-of-plane modes and focus on in-plane modes. The
dimensionless frequency of in-plane modes ω̄xy is related to
the physical frequency by ω̄xy = ω

√
ρ/E W . In the continuum

model, all branches extend to infinity but we are only interested
in the range ω̄xy ∈ [0,5] since for a typical GNR width of
W = 30 nm, ω̄xy = 5 relates to a magnetic field of 20 T. The
dimensionless wave number q̄ is obtained from the physical
wave number via q̄ = qW . For symmetry reasons explained
in Sec. VI, not all branches contribute to spin relaxation but
only those which are explicitly labeled in Fig. 4.

In the case of free boundaries, the branches α2, α4, and
α5 are relevant. While α2 extends throughout the considered
interval, α5 only exists above ω̄xy = 4.16, and α4 needs further
discussion. Its minimum is 3.05 and occurs at a finite value
q̄0 where the density of states has a Van Hove singularity. We
consider two parts: for q̄ < q̄0, we label the branch α4,1 and its
label for q̄ > q̄0 is α4,2. The range of α4,1 is ω̄xy ∈ [3.05,3.18]
and α4,2 extends from its minimum to infinity.

For fixed boundaries, we only need to consider the branch
α̃1. It extends from ω̄xy = 2.06 to infinity. We emphasize that
for a typical GNR width of 30 nm, single-phonon processes
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FIG. 4. (Color online) Phonon dispersion for (a) free and (b)
fixed boundaries. The dimensionless frequency ω̄xy is connected to
the physical frequency by ω̄xy = ω

√
ρ/E W , where the radicand

contains elastic constants listed in Table I. We restrict our interest
to the frequency range ω̄xy ∈ [0,5] since for W = 30 nm, the upper
bound already relates to a magnetic field of 20 T. The scale on
the right-hand side shows the magnetic field for W = 30 nm. Due
to parity with respect to x, only the labeled branches (αi for free
and α̃1 for fixed boundaries) assist in spin relaxation. (a) The
phonon spectrum is gapless for free boundaries. The branch α4 has
a minimum and hence a diverging density of states for finite q̄. Its
constituent parts α4,1 and α4,2 shall be treated separately. (b) Fixed
edges lead to gapped phonon spectrum. For W = 30 nm, this gap
corresponds to 8.25 T. In our range of interest, the branch labeled α̃1

provides the only channel for spin relaxation.

do not occur up to 8.25 T as there are no phonons below
ω̄xy = 2.06 for fixed boundaries.

V. COUPLING MECHANISMS

Phonons do not couple to the electron spin directly.
The relevant mechanism usually involves the spin-orbit
interaction.24,25,31 In graphene, the spin-orbit interaction is
given by

HSOI = HI + HR

= λI τzσzsz + λR(τzσxsy − σysx) (20)

and we will consider it in order to obtain an indirect spin-
phonon coupling.27–29 The intrinsic (Dresselhaus) termHI has
coupling strength λI and the Rashba (or extrinsic) term HR

couples with strength λR . The valley is denoted by τz, pseu-
dospin by σ , and real spin by s. In the following, we show how
the real electron spin can be connected to the vibrational state
of the system by taking the spin-orbit interaction into account.

A. Coupling to in-plane modes

In first-order perturbation theory, HR corrects the electron-
spin product states |k〉|↑〉 = |k↑〉(0) to

|k↑〉 = |k↑〉(0) +
∑
k′ �=k

|k′↓〉(0)
(0)〈k′↓|HR|k↑〉(0)

Ek − E′
k + gμBB

, (21)

and |k↓〉 accordingly. We emphasize that the summation
index k′ runs over both bound and extended states. The
potential depth and the aspect ratio determine how many
bound states exist, Fig. 2(b). For extended states, we consider
all wave numbers inside the first Brillouin zone, kEB =
0,±2π/LGNR, . . . ,±π/a.

The second term in Eq. (21) admixes states with opposite
spin such that the electron-phonon coupling HEPC can induce
a spin flip31

〈k↓|HEPC|k↑〉

=
∑
k′ �=k

[
(HEPC)kk′(HR)↓↑

k′k

Ek − Ek′ + gμBB
+ (HEPC)k′k(HR)↓↑

kk′

Ek − Ek′ − gμBB

]
, (22)

where we denote the numerator in Eq. (21) as (HR)↓↑
k′k and the

spin-conserving transitions of HEPC accordingly. We find that
for a given k′, the two terms in Eq. (22) exactly cancel each
other at B = 0. This effect is known as Van Vleck cancella-
tion and is expected for time-reversal-symmetric systems.36

Moreover, (HR)↓↑
kk′ vanishes if both k and k′ represent bound

states and the longitudinal excitation indices jk , jk′ (see Fig. 2)
are both even or both odd. In the electron phonon coupling
HamiltonianHEPC, we consider the deformation potentialHDP

as well as the bond length change HBLC

HEPC = HDP + HBLC, (23)

HDP = g1∇ · u‖,

HBLC = g2

⎛
⎜⎜⎜⎝

0 Ax − iAy 0 0

Ax + iAy 0 0 0

0 0 0 Ax + iAy

0 0 Ax − iAy 0

⎞
⎟⎟⎟⎠,

where g1,2 are coupling constants, (Ax,Ay) = (uxx −
uyy,−2uxy), and the basis of Eq. (8) has been used.8,33,34

B. Vanishing out-of-plane deflection coupling

Low-energy acoustic phonons at the center of the Brillouin
zone have a wavelength much larger than the lattice constant
and produce a local tilt of the GNR. In the local ribbon frame
�′ where n = e′

z is the vector normal to the ribbon plane the
local spin matrix is described by s ′

z = sz − ∂xuzsx − ∂yuzsy .
As a consequence, the intrinsic spin-orbit interaction

HI = λI τzσz(sz − ∂xuzsx − ∂yuzsy) (24)

becomes dependent on out-of-plane phonons such that these
could flip the spin. This is known as deflection coupling.25,35

However, there is a proportionality to τz in Eq. (24). Since
the electronic states we use have the property that the wave
function has equal weight on each valley,37 the contributions
from K and K ′ add up to zero and the deflection coupling
between spin and out-of-plane modes vanishes.
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If the spin-orbit admixed states of Eq. (21) are used, there
is a finite overlap only between both admixed parts such that
the resulting mechanism is proportional to λIλ

2
R and hence

negligible.
Compared to in-plane phonons, both deformation potential

and bond length change appear only in higher order such that
we neglect these mechanisms for out-of-plane phonons.

VI. EVALUATION OF T1

Using Eq. (4), we calculate the spin relaxation rate for
the electron in the lowest bound state (ground state) of
the QD. For concreteness, we assume μ = −1 in Eq. (5).
According to Eqs. (11), (14), and (15), both bound and
extended states have a finite probability density in the barrier
regions. However, bound states are localized in the dot region
and decay exponentially in the barrier regions. In particular the
ground state, plotted in Fig. 2(a), has a very low probability
density in the barrier regions. Its overlap with another bound
state in the barrier regions is negligible. Only high-energy
extended states have a significant contribution outside the dot
region. Yet the overlap of an extended state with the ground
state outside the dot region will still be small and since they
are energetically far apart, the contribution from the barrier
regions can be neglected. As a consequence, we can restrict
the integrals in Eq. (22) to the dot region.

As discussed in Sec. IV, we consider phonons with free
boundaries as well as phonons with fixed boundaries. Not
all branches contribute to spin relaxation: Because of mirror
symmetry with respect to x = 0, HBLC and HDP are even or
odd in x, depending on what phonon branch they belong to.
Due to their similar form,38 the mechanisms are either both
even or both odd for a given branch. The x dependencies of
the electronic states in the matrix element (HEPC)k′k cancel
out, ei(q0−q0)x = 1, such that the x integral vanishes if Eq. (23)
is odd in x. The branches α2, α4, and α5 in Fig. 4(a) and α̃1

in Fig. 4(b) have couplings HEPC that are even in x and hence
can relax the spin.

For a given relaxation channel (α,q), both mechanismsHDP

and HBLC are combined in Eq. (4) coherently. Moreover, the
couplings via bound states and extended states in Eq. (21) are
added up in a coherent way. We are interested in the relaxation
of the spin in the ground state, which corresponds to j = 0
in Fig. 2(b) and hence restrict the barrier height to �V ∈
[0, 2h̄vFq0 + �V1]. If �V exceeds this upper bound, valence
states become available in the barrier regions and the lowest
state inside the QD can leave the dot region. For �V < �V1

on the other hand, the ground state is the only bound state
such that the perturbation in Eq. (21) comes about only due to
extended states, which fully determine the spin relaxation in
this case.

For spin relaxation, Eq. (4) is proportional to nα,q + 1
and we assume nα,q = 0, i.e., sufficiently low temperature,
kBT � h̄ω = gμBB. By kB we denote Boltzmann’s constant.
Assuming a magnetic field of B = 1 T, this means T � 1.3 K.
For T � 15 K, spontaneous emission can be neglected since
nα,q � 1 and one obtains the spin relaxation by multiplying
our results with the expectation value of the Bose distribution

〈nα,q(B,T )〉 = (
e

gμBB

kBT − 1
)−1

. (25)

The spin relaxation time T1 is a good measure for overall
coherence when pure dephasing, which comes from coupling
to nuclear spins, is negligible. Due to the low density of
nuclear spins in natural carbon and the very different magnetic
moments μB � μnuc, we expect that flip-flop processes with
nuclear spins can be neglected for magnetic fields above 10 mT.
For a typical GNR width of W = 30 nm, 10 mT correspond to
ω̄xy = 0.0025. As a consequence, we restrict our calculations
to the interval ω̄xy ∈ [0.0025,5]. The upper bound corresponds
to a magnetic field of 20 T. All plots that show rates are cut off
at these boundaries.

VII. RESULTS

To calculate T1, we need to use the specific values of the
elastic constants that define the phonon spectrum. Young’s
modulus for the two-dimensional lattice of graphene is
obtained by multiplying the bulk value with the thickness
associated with graphene, E = E3Dh, where h = 3.4 Å. For
further discussion of the elastic constants, we refer to Ref. 30.
Table I gives an overview of the constants we use in our
calculation. The Rashba-type spin-orbit coupling is linear in
the electric field and thus can be adjusted by an external electric
field or by using a suitable substrate.28

The spin relaxation time T1 depends on three parameters:
(i) the aspect ratio L/W of the QD, (ii) the potential depth �V

of the QD, and (iii) the applied perpendicular magnetic field
B ∝ ω̄xy . Moreover, the phonon spectrum and hence the spin
relaxation depends on the mechanical boundary conditions.
We discuss free boundary conditions separately from fixed
boundaries.

A. Free boundary conditions

For symmetry reasons explained above, only the phonon
branches with labels α2, α4 (consisting of parts α4,1 and α4,2),
and α5 in Fig. 4(a) need to be considered. The respective rates
of these relaxation channels are shown in Fig. 5 for an aspect
ratio of L/W = 5 and a barrier height of �V = 1.8h̄vFq0. The
allocation of panels to branches is as follows: Fig. 5(a) belongs
to branch α5, 5(b) to α4,1, 5(c) to α4,2, and 5(d) to α2. Each panel
shows four separate contributions to T −1

1 that come about from
the two mechanisms in Eq. (23) and the admixture of bound
states or of extended states in Eq. (21) for each mechanism.
The coherent sum of all four contributions is displayed by
the gray line. The deformation potential usually dominates
over the bond length change since its coupling constant is
20 times larger, Table I. For �V = 1.8h̄vFq0, extended states
are energetically far away from the ground state such that the
contribution from the deformation potential with admixture of
bound states dominates in Fig. 5. Oscillations in individual
rates may be due to the phonon phase eiqy that is integrated
with the matrix elements (HEPC)k′k and rotates according to
the phonon dispersion when ω is changed. Figures 5(c) and
5(d) show that the matrix elements (HDP)k′k and (HBLC)k′k may
interfere destructively, thus decreasing T −1

1 by several orders
of magnitude, yet typically not to zero.

In all these plots, the bottom scale shows ω̄xy and the top
scale shows the magnetic field B that corresponds to ω̄xy ,
assuming a width of W = 30 nm. Note, that T −1

1 does not
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FIG. 5. (Color online) Partial rates for various relaxation chan-
nels. For L/W = 5 and �V = 1.8h̄vFq0, all contributions to the
four relaxation channels α5 (a), α4,1 (b), α4,2 (c), and α2 (d) are
shown. The contributions stem from HDP with admixture of bound
(labeled “bDP”) states or extended states (“eDP”) and from HBLC

with the same admixtures (“bBLC” and “eBLC”, respectively). These
contributions are added up coherently to the “combined” relaxation
of the respective channel.

depend on B and W separately, but only on the product BW ∝
ωW ∝ ω̄xy .

Figure 6(a) shows the full spin relaxation rate for the
situation of Fig. 5, that is, the combined rates of all relaxation
channels α2, α4,1, α4,2, and α5 (gray lines in Fig. 5) are summed
up to the full relaxation rate T −1

1 [gray line in Fig. 6(a)]. The
rate with the label “bound” (“extended”) is obtained in a similar
fashion, but only contributions with admixture of bound

FIG. 6. (Color online) The relaxation rates for different dot
depths �V . By summing up the combined relaxation rates (see
Fig. 5) of all channels available for a certain ω̄xy , the full relaxation
rate (gray line) is obtained. The lines labeled “bound” and “extended”
are obtained in a similar way by considering only bound or extended
states, respectively. At ω̄xy = 3.05, T −1

1 is discontinuous due to the
advent of the relaxation channel α4 that has a diverging density of
states at this point, Fig. 4(a). (a) accords to parameters L/W = 5
and �V = 1.8h̄vFq0 as in Fig. 5. Clearly, the energetically far off
extended states play a negligible role for such a deep dot. In (b), the
barrier height is reduced to 0.2h̄vFq0 such that extended states are
about as important as bound states.

(extended) states are considered, here. For �V = 1.8h̄vFq0,
the admixture of bound states dominates the admixture of ex-
tended states by several orders of magnitude. Yet by lowering
�V , the influence of extended states can be close to [Fig. 6(b)]
or even surpass the influence of the bound states. Figure 7
shows two cases for an aspect ratio of L/W = 2. In Fig. 7(a),
the barrier height is �V = 2.0h̄vFq0 and extended states are
basically irrelevant compared to the relaxation via bound
states. However, Fig. 7(b) shows that for �V = 0.9h̄vFq0, the
major contribution comes from the extended states.

Figure 8(a) shows T −1
1 as a function of parameters �V and

ω̄xy ∝ B, and for a fixed aspect ratio of L/W = 5. In contrast
to ω̄xy , the barrier height hardly changes the qualitative picture.
The orange cut at �V = 1.8h̄vFq0 is repeated in Fig. 8(b) in
a doubly logarithmic plot that highlights the B5 dependence
in the range ω̄xy ∈ [0.0025,0.5]. In this range, only the branch
α2 is available and has a linear dispersion B ∝ ω ∝ q. The
matrix elements (HEPC)k′k have one power in B due to (i) the
gradients ∝q in Eq. (23), (ii) dipole approximation ∝q,
and (iii) Van Vleck cancellation ∝B, each. Because of the
prefactor ∝ω−0.5 in Eq. (19), we find (HEPC)k′k ∝ B2.5. As
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FIG. 7. (Color online) This plot shows the same quantities as
Fig. 6, yet for the aspect ratio L/W = 2. Again, the influence of
extended states depends on the barrier height: �V = 2.0h̄vFq0 in (a)
and �V = 0.9h̄vFq0 in (b). The extended states dominate in the latter
case.

α2 is linear and hence ρstates ∝ B0 for this low-field regime,
this explains T −1

1 ∝ B5. Destructive interference of matrix
elements (HDP)k′k and (HBLC)k′k can lead to a very small but
nonzero relaxation rate.

Figure 9(a) shows a plot similar to Fig. 8(a), yet for L/W =
2. The qualitative picture is much different from the aspect ratio
L/W = 5. Figures 6–9(a) all show discontinuities at ω̄xy =
3.05 that stem from the branch α4, for which the density of
states has a Van Hove singularity at q̄0 while the couplingHEPC

remains finite, Fig. 4(a).

B. Fixed boundary conditions

Most importantly, fixed boundaries result in a gapped
phonon spectrum. This means that spin relaxation involving
only one phonon cannot occur for magnetic fields that
correspond to ω̄xy < 2.06. Note, that for a typical width
W = 30 nm, ω̄xy = 2.06 corresponds to a magnetic field of
8.25 T. However, phonon scattering may still take place below
this threshold. In contrast to our claim in Ref. 30, only the
branch α̃1 contributes to the spin relaxation rate. Gradients,
dipole approximation, and Van Vleck cancellation play the
same role as for free boundaries, yet due to the gap the
frequency ω is not proportional to some power of q such
that there is no power law that connects T −1

1 and B as for free
boundaries.

Figure 9(b) shows an analog to Fig. 9(a), yet for fixed
boundaries. For aspect ratios larger than in Fig. 9(b), oscil-

FIG. 8. (Color online) Spin relaxation rate T −1
1 for an aGNR

with aspect ratio L/W = 5 and free edges. (a) The rate is shown as a
function of barrier height �V and phonon frequency ω̄xy . The orange
cut corresponds to the gray line in Fig. 6(a) and is repeated in (b) with
a doubly logarithmic scale that highlights the B5 dependence in the
interval ω̄xy ∈ [0.0025,0.5].

lations occur, which can again be explained with the phonon
phase eiqy that rotates according to the phonon dispersion
when ω changes. These oscillations arise only if the dot length
is large enough.

VIII. DISCUSSION

The spin relaxation times we find in our work range from
10−7 seconds to beyond the second range. For cases where
T1 is very long, it can be expected that other mechanisms
not considered here will dominate. Our results depend on the
aspect ratio L/W , the barrier height �V , and the Zeeman
splitting gμBB ∝ ω̄xy but also on the mechanic boundary
conditions that lead to different phonon dispersions. By
choosing/adjusting these degrees of freedom properly, T1 can
be in the range of seconds. We attribute such long relaxation
times to several effects:

(i) GNRs are quasi-one-dimensional systems similar to
carbon nanotubes. Both the phonon and the electron density
of states are thus limited compared to bulk graphene.24

205432-8



ELECTRON SPIN RELAXATION IN GRAPHENE . . . PHYSICAL REVIEW B 87, 205432 (2013)

ωxy

FIG. 9. (Color online) The relaxation rate T −1
1 for (a) free and

(b) fixed mechanic boundaries. (a) This case is similar to Fig. 8(a)
yet with aspect ratio L/W = 2. (b) Fixed boundary conditions and
L/W = 2. Due to the gapped phonon spectrum, the rate T −1

1 vanishes
below ω̄xy = 2.06 for our model and with fixed boundaries. Moreover,
T −1

1 is not discontinuous in ω̄xy as the branch α̃1 never becomes flat
for finite q̄, see Fig. 4(b).

(ii) Destructive interference between the deformation po-
tential and the bond length change as well as oscillations due
to the phonon phase eiqy that rotates according to the phonon
dispersion when ω changes both reduce the relaxation rate T −1

1
by several orders of magnitude for specific magnetic fields.

(iii) In contrast to other graphene QD systems, the electronic
states in aGNRs are invariant under time-reversal symmetry,
which leads to Van Vleck cancellation.12,25,36 As a result,
Eq. (22) vanishes for B = 0.

(iv) Deflection coupling to out-of-plane modes vanishes as
the evenly distributed weights on K and K ′ spinor components
cancel out. As a result, only the very rigid in-plane modes need
to be considered. This rigidity leads to a generally small density
of phonon states ρstates.12,35

(v) Phonons do not couple to spin directly so that spin-orbit
coupling needs to be included. However, spin-orbit coupling
in graphene is weak compared to other systems (e.g., carbon
nanotubes).12,24,29

(vi) The admixture of electronic states in Eq. (21) includes
bound and extended states. However, only every second bound
state contributes; for parity in y direction, jk and jk′ may
not be even or odd at the same time, Fig. 2(b). States that
are energetically far apart from the ground state play a small
role in the sum which is usually the case for extended states,
depending on �V . As a consequence, the admixture of these
electronic states is suppressed.12,31

(vii) Due to parity in the x direction, not all phonon branches
contribute to spin relaxation but only those with explicit labels
in Fig. 4, for which Eq. (23) is even in x. This limits the number
of relaxation channels.30 It is an open question how strong the
avoided relaxation channels contribute to T −1

1 if this symmetry
is broken.

(viii) We assume phonon vacuum in Eq. (4). A finite
temperature can be included by multiplying the rate T −1

1 with
the expectation value of the Bose distribution 〈nα,q (B,T )〉 as
explained in Sec. VI.

The carbon isotope 12C has no nuclear spin and the
natural abundance of 13C, which has spin 1/2, is only
1%. Thus, pure dephasing, which comes from coupling to
nuclear spins is likely to play a minor role in graphene
devices and T1 ≈ T2/2 becomes a good measure for overall
coherence. Our results show that electronic spin qubits in
aGNRs are promising for spintronics applications like the
Loss-DiVincenzo quantum computer. With view to recent
advances in controlling the edge termination of GNRs it will be
interesting to see whether aGNR spintronics can be realized in
experiment.
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